当前位置: > 请教如何证明下面这个定律:一个数不能被任何质数整除,那么它就一定不能被任何合数整除...
题目
请教如何证明下面这个定律:一个数不能被任何质数整除,那么它就一定不能被任何合数整除
其实我想问的是,假设M=N个连续质数的乘积=2*3*5*7*.......*N+1,很明显,M不能被除1和自身之外的任何质数整除,那么,怎么证明M也不能被任何合数整除呢?

提问时间:2020-07-27

答案
数论中有个定理:算术基本定理
任何一个大于1的自然数N,都可以唯一分解成有限个质数的乘积 N=(P_1^a1)*(P_2^a2).(P_n^an) ,这里P_1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.