题目
已知向量A(M,1)B=SINX,COSX,F(X)=A.B且满足F(π/2)=1,求函数F(X)的解析式
并求出函数Y=f(x)的最小周期和最值,以及对应的x值,摆脱你了
并求出函数Y=f(x)的最小周期和最值,以及对应的x值,摆脱你了
提问时间:2020-07-27
答案
向量a=(m,1),
向量b=(sinx,cosx),
f(x)=a·b=msinx+cosx,
f(π/2)=msin(π/2)+cos(π/2)=m=1,
m=1,
则f(x)=sinx+cosx.,
f(x)=√2[sinx(√2/2)+cosx(√2/2)]
=√2sin(x+π/4),
最小周期=2π,
最大值=√2,x+π/4=2kπ+π/2,当x=2kπ+π/4时有最大值,
最小值=-√2,x+π/4=2kπ+3π/2,当x=2kπ+5π/4时有最小值.
向量b=(sinx,cosx),
f(x)=a·b=msinx+cosx,
f(π/2)=msin(π/2)+cos(π/2)=m=1,
m=1,
则f(x)=sinx+cosx.,
f(x)=√2[sinx(√2/2)+cosx(√2/2)]
=√2sin(x+π/4),
最小周期=2π,
最大值=√2,x+π/4=2kπ+π/2,当x=2kπ+π/4时有最大值,
最小值=-√2,x+π/4=2kπ+3π/2,当x=2kπ+5π/4时有最小值.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1蒸馏水是纯净物,为什么空气中还有水蒸汽?
- 2学校买了一些图书,发给四年级各个班.每班3本多3本,每班5本差5本,五年级一共有多少个班?买了多少本书
- 3征文《中国颂》3000字,下周5交稿!
- 4英语翻译
- 5原来在国王身边的人都叫什么?
- 6x的二次方-6x-3 (在实数范围内因式分解)
- 7英语翻译
- 8已知线段AB=m,CD=n,线段CD在直线AB上运动(A在B左侧,C在D左侧),若|m-2n|=-(6-n)2. (1)求线段AB、CD的长;(2)M、N分别为线段AC、BD的中点,若BC=4,求MN
- 9求与下列成语有关的历史人物:
- 10is anybody there 和is everybody there 有什么区别?