当前位置: > 已知向量A(M,1)B=SINX,COSX,F(X)=A.B且满足F(π/2)=1,求函数F(X)的解析式...
题目
已知向量A(M,1)B=SINX,COSX,F(X)=A.B且满足F(π/2)=1,求函数F(X)的解析式
并求出函数Y=f(x)的最小周期和最值,以及对应的x值,摆脱你了

提问时间:2020-07-27

答案
向量a=(m,1),
向量b=(sinx,cosx),
f(x)=a·b=msinx+cosx,
f(π/2)=msin(π/2)+cos(π/2)=m=1,
m=1,
则f(x)=sinx+cosx.,
f(x)=√2[sinx(√2/2)+cosx(√2/2)]
=√2sin(x+π/4),
最小周期=2π,
最大值=√2,x+π/4=2kπ+π/2,当x=2kπ+π/4时有最大值,
最小值=-√2,x+π/4=2kπ+3π/2,当x=2kπ+5π/4时有最小值.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.