题目
已知函数(f)=m(x的2方)+(m-3)x+1的零点至少有一个是正实数,则实数m的取值范围是
已知f(x)=-x-x(的三方),x∈[a,b],且f(a)*f(b)<0,则f(x)=0在[a,b]内有几个实数根?
若f(X)=a(x的三方)+ax+2(a≠0)在[-6.6]上满足f(-6)>1,且f(6)<1,则方程f(x)=1在(-6,6)内根的个数为?
已知f(x)=-x-x(的三方),x∈[a,b],且f(a)*f(b)<0,则f(x)=0在[a,b]内有几个实数根?
若f(X)=a(x的三方)+ax+2(a≠0)在[-6.6]上满足f(-6)>1,且f(6)<1,则方程f(x)=1在(-6,6)内根的个数为?
提问时间:2020-07-26
答案
第一题
当m=0时f(x)=-3X+1.令f(x)=0得X=1/3.成立
当m≠0时.f(x)=mx^2+(m-3)x+1它的△≥0得(m-3)^2-4m≥0解得m≤1或m≥9
利用韦达定理.要使至少一个零点为正实数有两个可能.
一正一负的是两根之积小于0,所以1/m0且1/m≥0.解得0
当m=0时f(x)=-3X+1.令f(x)=0得X=1/3.成立
当m≠0时.f(x)=mx^2+(m-3)x+1它的△≥0得(m-3)^2-4m≥0解得m≤1或m≥9
利用韦达定理.要使至少一个零点为正实数有两个可能.
一正一负的是两根之积小于0,所以1/m0且1/m≥0.解得0
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1they live longer than people who don"t
- 2用面积8平方分米的正方形纸片,剪成一个最大的圆.这个圆的面积是多少?最好列出算试)
- 3作文 A day at school (不少于6句,根据问题和提示)
- 4如果溶质过多,溶剂少 那么这是饱和溶液还是不饱和溶液
- 5哪些名词+es
- 6I want to move some pictures __ one room to the other.
- 7化简:sinA^2tanA+cosA^2cotA+2sinAcosA
- 8我们准备早上9点钟出发用英语怎么说?
- 9“羌管悠悠霜满地”在《渔家傲·秋思》中的作用
- 10求一篇An exciting moment作文