当前位置: > 将多项式1+2x+3x^2+4x^3+5x^4按(x+1)幂展开....
题目
将多项式1+2x+3x^2+4x^3+5x^4按(x+1)幂展开.

提问时间:2020-07-26

答案
1+2x+3x^2+4x^3+5x^4=5(x+1)⁴-16(x+1)³+21(x+1)²-12(x+1)+3
(1+2x+3x^2+4x^3+5x^4)/(x+1)=(5x³-x²+4x-2)余3,
=> 1+2x+3x^2+4x^3+5x^4=(5x³-x²+4x-2)(x+1)+3;
同理5x³-x²+4x-2=(5x²-6x+10)(x+1)-12,
5x²-6x+10=(5x-11)(x+1)+21=[5(x+1)-16](x+1)+21=5(x+1)²-16(x+1)+21,
=> 1+2x+3x^2+4x^3+5x^4=(5x³-x²+4x-2)(x+1)+3
=[(5x²-6x+10)(x+1)-12](x+1)+3
={[5(x+1)²-16(x+1)+21](x+1)-12}(x+1)+3
=5(x+1)⁴-16(x+1)³+21(x+1)²-12(x+1)+3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.