题目
已知函数f(x)=loga
x+b |
x−b |
提问时间:2020-07-26
答案
(1)因为
>0,解之得x<-b或x>b,
∴函数的定义域为(-∞,-b)∪(b,+∞).…(3分)
(2)由(1)得f(x)的定义域是关于原点对称的区间
f(-x)=loga
=loga
,
∵-f(x)=loga(
)-1=loga
,
∴f(-x)=-f(x),可得f(x)为奇函数.…(6分)
(3)证明:设b<x1<x2,则
f(x1)-f(x2)=loga
,
∵
-1=
>0
∴当a>1时,f(x1)-f(x2)>0,可得f(x1)>f(x2),f(x)在(b,+∞)上为减函数;
当0<a<1时,f(x1)-f(x2)<0,可得f(x1)<f(x2),f(x)在(b,+∞)上为增函数.
同理可得:当a>1时,f(x)在(-∞,-b)上为减函数;当0<a<1时,f(x)在(-∞,-b)上为增函数.
综上所述,当a>1时,f(x)在(-∞,-b)和(b,+∞)上为减函数;当0<a<1时,f(x)在(-∞,-b)和(b,+∞)上为增函数.…(12分)
x+b |
x−b |
∴函数的定义域为(-∞,-b)∪(b,+∞).…(3分)
(2)由(1)得f(x)的定义域是关于原点对称的区间
f(-x)=loga
−x+b |
−x−b |
x−b |
x+b |
∵-f(x)=loga(
x+b |
x−b |
x−b |
x+b |
∴f(-x)=-f(x),可得f(x)为奇函数.…(6分)
(3)证明:设b<x1<x2,则
f(x1)-f(x2)=loga
(x1+b)(x2−b) |
(x2+b)(x1−b) |
∵
(x1+b)(x2−b) |
(x2+b)(x1−b) |
2b(x2−x1) |
(x2+b)(x1−b) |
∴当a>1时,f(x1)-f(x2)>0,可得f(x1)>f(x2),f(x)在(b,+∞)上为减函数;
当0<a<1时,f(x1)-f(x2)<0,可得f(x1)<f(x2),f(x)在(b,+∞)上为增函数.
同理可得:当a>1时,f(x)在(-∞,-b)上为减函数;当0<a<1时,f(x)在(-∞,-b)上为增函数.
综上所述,当a>1时,f(x)在(-∞,-b)和(b,+∞)上为减函数;当0<a<1时,f(x)在(-∞,-b)和(b,+∞)上为增函数.…(12分)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1一次函数y=x+b,与x轴、y轴的交点分别为A、B,若△OAB的周长为2+2(O为坐标原点),求b的值.
- 2是正确的吗理由错在哪里
- 3如何理解小学数学中的单位1
- 4在化学反应2A+B=2X+Y中,已知5gA和7gB恰好完全反应,生成X的质量是Y的3倍;则生成的X为 _ g.若要使该反应生成Mg X,则需要 _ gB参加反应.
- 5请问 什么是开式循环冷却水系统,什么是闭式循环冷却水系统?
- 6怎么把一个数改写成用亿作单位的数
- 7We need to go to the b----------- to buy some books.填一词
- 8蝙蝠的蝙还可以组什么词?
- 9用什么方式拉车子最省力啊?
- 10点P是双曲线C:x²/a²-y²/b²=1上的点,F1,F2是双曲线的左、右焦点,那么向量PF1·向量PF2的最小值为
热门考点