题目
已知函数f(x)=ax+lnx(a∈R).
(1)当a=2时,求函数f(x)的图像在点(1,f(1))处的切线方程;(2)求f(x)的单调区间;(3)设g(x)=x∧2-2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2)求a的取值范围.急用谢谢啦^O^
(1)当a=2时,求函数f(x)的图像在点(1,f(1))处的切线方程;(2)求f(x)的单调区间;(3)设g(x)=x∧2-2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2)求a的取值范围.急用谢谢啦^O^
提问时间:2020-07-26
答案
(1)f'(x)=a+1/x, f(1)=a, f'(1)=a+1,当a=2时,
在点(1,f(1))处的切线方程:y-a=(a+1)(x-1),即y==3x-1
(2)f‘(x)=a+1/x,∵x>0,∴当a≥0时,f‘(x)>0,函数在(0,+∞)递增.
而当a<0时,00函数递增;x>-1/a,函数递减
(3)g(x)=x∧2-2x+2,其最小点是x=1,对x2∈[0,1],g(x2)的最小值是g(1)=1
∴若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),则要f(x)<1
此时,a<0,由(2)知道,f(-1/a)=-1+ln(-1/a)<1,-ln(-a)<2,-a>e^(-2),∴a<-e^(-2)
注:没有检验,请按此思路,自己再作一下
在点(1,f(1))处的切线方程:y-a=(a+1)(x-1),即y==3x-1
(2)f‘(x)=a+1/x,∵x>0,∴当a≥0时,f‘(x)>0,函数在(0,+∞)递增.
而当a<0时,0
(3)g(x)=x∧2-2x+2,其最小点是x=1,对x2∈[0,1],g(x2)的最小值是g(1)=1
∴若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),则要f(x)<1
此时,a<0,由(2)知道,f(-1/a)=-1+ln(-1/a)<1,-ln(-a)<2,-a>e^(-2),∴a<-e^(-2)
注:没有检验,请按此思路,自己再作一下
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1about是在此处是介词还是副词?
- 2176的平方+166*176+58的平方181的平方-53的平方
- 3夫子之道,忠恕而已矣,的意思
- 4一个粮店运进大米50袋,每袋重75千克,运进面粉是大米总质量的四分之三,运进的面粉比大米少多少千克?
- 5英语翻译
- 6《千手观音》舞蹈抒发了怎样的思想感情?
- 7how many () would you liketo drink?A.cup of B.cups of teas C.cup of teas D.cups of tea
- 8小明手里有一块体积为8厘米的橡皮泥,小哥要求把它捏成底面半径为2厘米的圆柱,圆柱的高为?
- 9不改变句意,将带点词语换成另一个词语.
- 101700/2470换算成百分比是多少啊?公式是什么?
热门考点