当前位置: > 数论题 证明:若n整除(a^n-b^n),则n整除(a^n-b^n)/(a-b),其中a,b,n均为整数....
题目
数论题 证明:若n整除(a^n-b^n),则n整除(a^n-b^n)/(a-b),其中a,b,n均为整数.
等价表述:若a^n-b^n≡0(mod n) ,则(a^n-b^n)/(a-b)≡0(mod n),其中a,b,n均为整数.
(当n为素数时很容易证明,但这里要求n为整数,我就纠结了)

提问时间:2020-07-26

答案
首先,n是质数时,结论成立,这个你也清楚,不再多说.
下面来说明n不是质数时的情形.
为了叙述的简单,我用递归的思想来描述.
设n=pm,其中p是质数,m可以是质数,也可以不是质数.则
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.