当前位置: > 函数f(x)=x3-3ax-a在(0,1)内有最小值,则a的取值范围是(  ) A.0≤a<1 B.0<a<1 C.-1<a<1 D.0<a<12...
题目
函数f(x)=x3-3ax-a在(0,1)内有最小值,则a的取值范围是(  )
A. 0≤a<1
B. 0<a<1
C. -1<a<1
D. 0<a<
1
2

提问时间:2020-07-26

答案
∵函数f(x)=x3-3ax-a在(0,1)内有最小值,
∴f′(x)=3x2-3a=3(x2-a),
若a≤0,可得f′(x)≥0,f(x)在(0,1)上单调递增,
f(x)在x=0处取得最小值,显然不可能,
若a>0,f′(x)=0解得x=±a,
当x>a,f(x)为增函数,0<x<a为减函数,、
f(x)在x=a处取得极小值,也是最小值,
所以极小值点应该在(0,1)内,
∴0<a<1,
故选B;
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.