等差数列{a
n}的前n项和为S
n,且满足a
3=10,S
7=91.数列{b
n+1-b
n}是公比为
的等比数列,且满足b
1=1,b
2=2.
(1)求数列{a
n},{b
n}的通项公式;
(2)记c
n=a
n+1b
n+1-a
nb
n,求数列{c
n}中的最大项.
提问时间:2020-07-26
(1)由a
3=10,S
7=91,得
,,
∴a
n=3n+1,
∵公比为
,b
2-b
1=1,
∴
bn+1-bn=()n-1(b2-b1)=()n-1,
n≥2时,b
n=(b
n-b
n-1)+(b
n-1-b
n-2)+…+(b
2-b
1)+b
1=
()n-2+()n-3+…+()0+1=3-()n-2,
n=1时,b
1=1也符合,
∴
bn=3-()n-2n∈N*;
(2)
cn=(3n+4)[3-()n-1]-(3n+1)[3-()n-2]=9+,
cn+1-cn=,
当n=1时,c
2>c
1,当n≥2时,c
n+1<c
n.
当n=2时,c
n的最大值为11;
(1)由a3=10,S7=91得a1,d的方程组,解出后按照等差数列的通项公式可得an,先由等比数列通项公式求得bn+1-bn,再用累加法可得bn;
(2)表示出cn,利用作差可判断数列{cn}的单调情况,由此可求得其最大项;
等差数列与等比数列的综合;数列的函数特性.
本题考查等差数列与等比数列的综合应用,考查递推式求数列通项的基本方法,考查学生的运算求解能力.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- 1若x=0是方程(a+2)x²+x+a²-4=0的根,则a的值为
- 2(我选了D,为啥不行呢?)
- 3the importance of being earnest中文或英文简介哪有?
- 4求化合价口诀,还有麻烦帮我解释下化合价口诀,
- 5play,game,Let,us,counting,a,连词组句.
- 61.tanα-cotα=2 则(tanα)^3-(cotα)^3=?
- 7幽默英语小故事3篇
- 8Is that the library是什么意思
- 9打算做饭的英语
- 10Can you help me do the home work?(同义句)Can you ____ ____ ____ ____ in the school?
热门考点