当前位置: > 双曲线的题.设F1、F2分别是双曲线(x^2)-(y^2 /9)=1的左右焦点...
题目
双曲线的题.设F1、F2分别是双曲线(x^2)-(y^2 /9)=1的左右焦点
设F1、F2分别是双曲线(x^2)-(y^2 /9)=1的左右焦点,若点P在双曲线上,且PF1向量*PF2向量=0,则|PF1向量+PF2向量|=?
答案是2根号10.可是我算不出.

提问时间:2020-07-26

答案
PF1⊥PF2
过F2作F2H‖PF1 过F1作F1H‖PF2,它们交于H点.那么PH就是PF1+PF2
这是一个矩形,所以对角线相等.
|PF1+PF2|= |PF1-PF2|=|F1F2|=2c
双曲线c=根号(1+9)=根号10
|PF1+PF2|= 2根号10
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.