当前位置: > 如图,在△ABC中,∠BCA=90°,以BC为直径的⊙O交AB于点P,Q是AC的中点.判断直线PQ与⊙O的位置关系,并说明理由....
题目
如图,在△ABC中,∠BCA=90°,以BC为直径的⊙O交AB于点P,Q是AC的中点.判断直线PQ与⊙O的位置关系,并说明理由.

提问时间:2020-07-26

答案
直线PQ与⊙O的位置关系是:相切.
其理由如下:
①连接OP、CP.
∵BC是直径,
∴CP⊥AB,
在Rt△APC中,Q为斜边AC的中点;
∴PQ=CQ=
1
2
AC(直角三角形斜边中线等于斜边一半),
∴∠QPC=∠QCP;
又OP=OC,
∴∠OPC=∠OCP,
又∠BCA=90°,
∴∠OPQ=90°,
∴OP⊥PQ,又∵OP为半径,
∴直线PQ与⊙O相切于点P.
②用三角形全等或者角的和(差)也可证明.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.