当前位置: > 函数f(x)=ax^2+2(a-3)x+1在区间(-2,+∞)上是减函数,则a的取值范围是?...
题目
函数f(x)=ax^2+2(a-3)x+1在区间(-2,+∞)上是减函数,则a的取值范围是?

提问时间:2020-07-26

答案
当a=0时,原式为f(x)=-6x+1,很显然为减函数;
当a≠0时,原式的导数为f'(x)=2ax+2(a-3),使之在(-2,+∞)上小于等于0即可;
a大于0时,f'(x)是增函数,显然不满足条件;
a小于0时,f'(x)是减函数,只要使f'(x)的最大值小于等于0即可,使f'(-2)≤0,解不等式得:a≤-3
将以上几种情况取并集得到a的取值范围是[-3,0]
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.