当前位置: > 利用单调有界原理求数列极限时,当证明出数列单调且有界时,那个界怎样证明就是数列的极限?...
题目
利用单调有界原理求数列极限时,当证明出数列单调且有界时,那个界怎样证明就是数列的极限?
如: x1>0,xn+1=1/2(xn+1/xn),求xn的极限时,已求得下界为1,且数列单调递减,则极限怎么说明也为1?

提问时间:2020-07-26

答案
好像没有任何证据证明“界”=“极限”
不过可以求得极限
因递减数列Xn存在下界,所以Xn有极限A
Xn+1也有极限,
所以可两边求极限lim(Xn+1)=lim(1/2(Xn^2+1)/Xn)
等价于limXn×lim(Xn+1)=limXn×lim(1/2(Xn^2+1)/Xn)
右式=lim(Xn×1/2(Xn^2+1)/Xn)=1/2(limXn)^2+1/2=1/2A^2+1/2
左式=A^2+A
解得A=1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.