当前位置: > 过抛物线y2=4ax(a>0)的焦点F,作相互垂直的两条焦点弦AB和CD,求|AB|+|CD|的最小值....
题目
过抛物线y2=4ax(a>0)的焦点F,作相互垂直的两条焦点弦AB和CD,求|AB|+|CD|的最小值.

提问时间:2020-07-26

答案
抛物线的焦点F坐标为(a,0),设直线AB方程为y=k(x-a),
则CD方程为y=−
1
k
(x−a)

分别代入y2=4x得:k2x2-(2ak2+4a)x+k2a2=0及
1
k2
x2−(2a
1
k2
+4a)x+
a2
k2
=0

|AB|=xA+xB+p=2a+
2a
k2
+2a
,|CD|=xC+xD+p=2a+4ak2+2a,
|AB|+|CD|=8a+
4a
k2
+4ak2≥16a
,当且仅当k2=1时取等号,
所以,|AB|+|CD|的最小值为16a.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.