当前位置: > 求一道定积分 ∫x/(1+sinx) dx 上限pi/4 下限-pi/4...
题目
求一道定积分 ∫x/(1+sinx) dx 上限pi/4 下限-pi/4
答案是-√2/2*pi+2*ln(√2+1)

提问时间:2020-07-26

答案
x/(1+sinx)=x(1-sinx)/[1-(sinx)^2]=x[(secx)^2-secxtanx]
∫x/(1+sinx)dx=∫x[(secx)^2-secxtanx]dx=∫xd(tanx-secx)
=x(tanx-secx)-∫(tanx-secx)dx
=x(tanx-secx)+ln|cosx|+ln|secx+tanx|+C
=x(tanx-secx)+ln(1+sinx)+C
所以(-π/4,π/4)∫x/(1+sinx)dx=-√2/2*π+2*ln(√2+1)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.