当前位置: > 是否存在实数a,使得函数f(x)=ax^2+bx+b-1对于任意实数b恒有两个零点?若存在,求出a的取值范围...
题目
是否存在实数a,使得函数f(x)=ax^2+bx+b-1对于任意实数b恒有两个零点?若存在,求出a的取值范围

提问时间:2020-07-26

答案
1、若a=0,显然不满足;
2、若a≠0,因函数f(x)=ax²+bx+b-1有两个零点,则:b²-4a(b-1)>0,即:
b²-4ab+4a>0对任意实数b恒成立,所以有:
(-4a)²-4×4a
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.