题目
若tan(α+β)=2/5.tan(b-π/4)=1/4.则tan(a+π/4)等于
提问时间:2020-07-26
答案
tan(a+π/4)=tan[(a+b)-(b-π/4)]
=[tan(a+b)-tan(b-π/4)]/[1-tan(a+b)tan(b-π/4)
=(2/5-1/4)/(1-2/5*1/4)
=(8-5)/(20-2)
=3/18
=1/6
=[tan(a+b)-tan(b-π/4)]/[1-tan(a+b)tan(b-π/4)
=(2/5-1/4)/(1-2/5*1/4)
=(8-5)/(20-2)
=3/18
=1/6
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点