当前位置: > 求线性方程组AX=b的通解...
题目
求线性方程组AX=b的通解
设A为三阶方阵,r(A)=2,AX=b有三个解x1,x2,x3.x1=[1,2,3]^T,x2+x3=(2,3,4)^T,则线性方程组AX=b的通解是什么?
该怎么分析.完全没思路额.求解释

提问时间:2020-07-26

答案
因为 r(A)=2
所以 AX=0 的基础解系含 3-r(A) = 1 个解向量
故 2x1 - (x2+x3) = 2(1,2,3)^T - (2,3,4)^T = (0,1,2)^T 是AX=0 的基础解系.
而 x1=[1,2,3]^T 是AX=b 的特解
故AX=b 的通解为 (1,2,3)^T+k(0,1,2)^T.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.