当前位置: > 高中数学 参数方程...
题目
高中数学 参数方程
在平面直角坐标系xOy中,动圆x^2+y^2-4√2xcosθ-4ysinθ+7(cosθ)^2-8=0(θ属于R)的圆心轨迹为E,P(x,y)为轨迹E上的任意一点.
(1)求2x-y的取值范围
(2)若点过P(-1,0)且倾斜角为30°的直线l与轨迹E相交与A,B两点,求线段AB的长.
√表示根号

提问时间:2020-07-26

答案
【解】:x^2+y^2-4√2xcosθ-4ysinθ+7(cosθ)^2-8=0(θ属于R)(x-2√2cosθ)^2+(y-2sinθ)^2=(cosθ)^2+4(sinθ)^2+8=9+3(sinθ)^2圆心坐标:x[E]=2√2cosθ;y[E]=2sinθ则:x[E]^2+2y[E]^2=8所以E的轨迹方程为:x^...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.