当前位置: > 已知A、B、P是双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)上不同的三点,且A、B两点的连线经过坐标原点.若直线PA,PB的斜率乘积K(pa)乘K(pb)=2/3,则该双曲线的离心率e为...
题目
已知A、B、P是双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)上不同的三点,且A、B两点的连线经过坐标原点.若直线PA,PB的斜率乘积K(pa)乘K(pb)=2/3,则该双曲线的离心率e为多少

提问时间:2020-07-26

答案
设A点坐标为(Xo,Yo)由于AB连线过原点则B点坐标为(-Xo,-Yo).设P点坐标为(Xi,Yi)
Kpa=(Yi-Yo)/(Xi-Xo)Kpb=(Yi+Yo)/(Xi+Xo)
相乘得(Yi2-Yo2)/(Xi2-Xo2)=2/3
将P和A点坐标代入曲线方程,两式相减并变形得(Yi2-Yo2)/(Xi2-Xo2)=b2/a2
则b2/a2=2/3再由a2+b2=c2得到c2/a2=5/3,进而再求出e.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.