当前位置: > 椭圆x^2/5+y^2/4=1上有一点P,与焦点F1F2夹角∠F1PF2=60°,求△F1PF2的面积...
题目
椭圆x^2/5+y^2/4=1上有一点P,与焦点F1F2夹角∠F1PF2=60°,求△F1PF2的面积

提问时间:2020-07-26

答案
利用定义,即PF1+PF2=2a=2倍根5,再在三角形F1PF2中使用一次余弦定理 F1F2^2=PF1^2+PF2^2-2PF1PF2cosF1PF2,可求得PF1^2+PF2^2-PF1PF2=4化为(PF1+PF2)^2-3PF1PF2=4,将PF1+PF2=2a=2倍根5代入,可求PF1PF2=16/3S=1/2PF1PF2...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.