题目
已知向量a=(根号3sinx,cosx+sinx),b=(2cosx,cosx-sinx),函数f(x)=a乘以b,x属于R
1.求函数f(x)的最小正周期 2.设三角形ABC内角A,B,C的对边分别为a,b,c,且c=根号3,f(C)=1,求三角形ABC面积的最大值
1.求函数f(x)的最小正周期 2.设三角形ABC内角A,B,C的对边分别为a,b,c,且c=根号3,f(C)=1,求三角形ABC面积的最大值
提问时间:2020-07-25
答案
f(x)=ab
=2√3sinxcosx+cos²x-sin²x
=√3sin2x+cos2x.正弦,余弦二倍角公式
=2(√3/2*sin2x+1/2*cos2x)
=2sin(2x+π/6)
(1)
最小正周期=2π/2=π
(2)
f(C)=2sin(2C+π/6)=1
sin(2C+π/6)=1/2
2C+π/6=π/6或5π/6
∵C是内角
∴C=π/3
余弦定理
cosC=(a²+b²-c²)/(2ab)
ab=a²+b²-3
∵a²+b²≥2ab
∴ab+3≥2ab
ab≤3
△ABC面积=1/2*ab*sinC=1/2*√3/2*ab≤√3/4*3=3√3/4
△ABC面积最大值=3√3/4
=2√3sinxcosx+cos²x-sin²x
=√3sin2x+cos2x.正弦,余弦二倍角公式
=2(√3/2*sin2x+1/2*cos2x)
=2sin(2x+π/6)
(1)
最小正周期=2π/2=π
(2)
f(C)=2sin(2C+π/6)=1
sin(2C+π/6)=1/2
2C+π/6=π/6或5π/6
∵C是内角
∴C=π/3
余弦定理
cosC=(a²+b²-c²)/(2ab)
ab=a²+b²-3
∵a²+b²≥2ab
∴ab+3≥2ab
ab≤3
△ABC面积=1/2*ab*sinC=1/2*√3/2*ab≤√3/4*3=3√3/4
△ABC面积最大值=3√3/4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1现有长度分别为3cm,(2x-1)cm,8cm的三根木棍围成一个三角形,则x(cm)的取值范围是
- 2有两根5厘米的小棒,如果再添一根小棒就能围成一个三角形,添的这根小棒的长度一定小于( )厘米?
- 3此三次函数是否有最大值:-1/2t^3-t^2+3(t大于0小于1)
- 4形容无论受多少挫折都不退缩,形容意志坚强的词语是哪个,百折不回是形容这个意思的词语吗?
- 5our classroom has four windows的同义句
- 62的2次方-1的2次方=3请用一种字母表示数,将上述式子中的规律用等式表示出来
- 7牛顿的微积分在怎样背景下创立的?
- 8走一步再走一步中前后两次写到“我”的啜泣,这泪水的含义一样吗?为什么?
- 9含“玉”字的词语
- 104 3 5 12的最小公倍数?