当前位置: > 设函数y=f(x)是定义在R+上的减函数,并且满足f(xy)=f(x)+f(y),f(1/3)=1...
题目
设函数y=f(x)是定义在R+上的减函数,并且满足f(xy)=f(x)+f(y),f(1/3)=1
(1)f(1)的值
(2)如果f(x)+f(2-x)<2,求x的取值范围

提问时间:2020-07-25

答案
因为f(xy)=f(x)+f(y),f(1/3)=1
所以f(1/3)=f(1*1/3)=f(1)+f(1/3)
所以f(1)=0
因为f(xy)=f(x)+f(y),f(1/3)=1
所以f(1/9)=f(1/3*1/3)=f(1/3)+f(1/3)=2
因为f(x)+f(2-x)<2
所以f(x(2-x))<2
即f(2x-x^2)<2=f(1/9)
因为函数y=f(x)是定义在R+上的减函数
所以2x-x^2>1/9
即9x^2-18x+1>0
所以x>(3+2√2)/3或x<(3-2√2)/3
注意y=f(x)是定义在R+上的减函数,f(x)+f(2-x)<2,所以x必须还满足x>0,x<2
综上知x的取值范围:0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.