当前位置: > f(x)满足对任意属于正实数的x1、x2有f(x1*x2)=f(x1)+f(x2),x>1时f(x)>0,求证f(x)在正实数范围内是增函数...
题目
f(x)满足对任意属于正实数的x1、x2有f(x1*x2)=f(x1)+f(x2),x>1时f(x)>0,求证f(x)在正实数范围内是增函数

提问时间:2020-07-25

答案
是这样的
在区间内取x1>0,x2>1.则在x>0范围内都有:x1×x2>x1>0,所以将等式移项为:f(x1×x2)-f(x1)=f(x2).又任意x>1时有:f(x)>0.即f(x1×x2)-f(x1)=f(x2)>0.即得证
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.