当前位置: > 三个一元二次方程ax²+bx+c=0,bx²+cx+a=0,cx²+ax+b=0有公共根,求证:a+b+c=0....
题目
三个一元二次方程ax²+bx+c=0,bx²+cx+a=0,cx²+ax+b=0有公共根,求证:a+b+c=0.

提问时间:2020-07-25

答案
设三个方程的公共根都为x
三个方程相加得:(a+b+c)x^2+(a+b+c)x+(a+b+c)=0
即(a+b+c)(x^2+x+1)=0
因为有x^2+x+1=(x+1/2)^2+3/4>0,
所以有a+b+c=0
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.