当前位置: > 复合函数求导公式的推导...
题目
复合函数求导公式的推导
(dy/du)*(du/dx)请问可以直接约分得到dy/dx吗?
证明:(dy/du)*(du/dx)把du约掉后等于dy/dx
所以y对x的导数等于y对u的导数乘以u对x的导数.
请问这样证明对吗?

提问时间:2020-07-25

答案
我们老师说不对.
正确(正式)的证明如下:
假设我们要求f(g(x))对x的导数,且f(g(x))和g(x)均可导.
首先,根据定义:当h->0时,g'(x)=lim(g(x+h)-g(x))/h,所以,当h->0时,lim(g(x+h)-g(x))/h-g'(x)->0
设v=(g(x+h)-g(x))/h-g'(x)
就有:g(x+h)=g(x)+(g'(x)+v)h
同理:f(y+k)=f(y)+(f'(y)+u)k
所以,f(g(x)+[g'(x) + v]h)=f(g(x))+[f'(g(x))+v]*[g'(x)+v]h (其实就是y=g(x),k=[g'(x) + v]h)
所以,(f(g(x+h))-f(g(x)))/h=(f(g(x))+[f'(g(x))+u]·[g'(x)+v]h−f(g(x)))/h
=[f'(g(x))+u]·[g'(x)+v]
当h->0时,u和v都->0,这个容易看.
所以当h->0时,(f(g(x+h))-f(g(x)))/h=[f'(g(x))+0]·[g'(x)+0]
=f'(g(x))·g'(x)
然后f'(g(x))=f'(g(x))·g'(x)
证毕
写得比较乱,主要是比较复杂,你还是写到纸上看看吧.
你说的约分可以用来帮助记忆,但不能用来当作证明.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.