题目
已知定义域为R的函数f(x)满足f(2+x)= f(2-x).
已知定义域为R的函数f(x)满足f(2+x)= f(2-x).
(1)若方程f(x)=0只有三个实数根,且一个根为0,求另外两个根;
(2)若f(x)又是偶函数,且x∈ [0,2]时,f(x)=2x-1,求x∈[-4,0]时f(x)的解析式
已知定义域为R的函数f(x)满足f(2+x)= f(2-x).
(1)若方程f(x)=0只有三个实数根,且一个根为0,求另外两个根;
(2)若f(x)又是偶函数,且x∈ [0,2]时,f(x)=2x-1,求x∈[-4,0]时f(x)的解析式
提问时间:2020-07-25
答案
定义域为R的函数f(x)满足f(2+x)= f(2-x)
就是说它的对称轴是x=2
一个根为0 所以另一个根为4
还剩一个根 只能为2
若f(x)又是偶函数
以及f(2+x)= f(2-x)
f(x+4)=f(-x)=f(x)
所以 f(x)周期为4
x∈[-4,-2]时
x+4∈[0,2]
f(x)=f(x+4)=2(x+4)-1=2x+7
x∈[-2,0]时
-x∈[0,2]
f(x)=f(-x)=-2x-1
就是说它的对称轴是x=2
一个根为0 所以另一个根为4
还剩一个根 只能为2
若f(x)又是偶函数
以及f(2+x)= f(2-x)
f(x+4)=f(-x)=f(x)
所以 f(x)周期为4
x∈[-4,-2]时
x+4∈[0,2]
f(x)=f(x+4)=2(x+4)-1=2x+7
x∈[-2,0]时
-x∈[0,2]
f(x)=f(-x)=-2x-1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1读题填空:某公园成人票价20元,儿童票价8元,某旅行团共有60人,买门票共花了960元,问:成人与儿童各多少人?
- 2Li Lei is ten years old.Lin Tao is ten years old,too.(合并为一句)
- 3世界上有没有可以逆时针拧紧的螺丝和螺母?
- 4有二氧化碳与一氧化碳的混合气体共10.8g,其物质的量为0.3mol.求(1)混合气体中二氧化碳与一
- 5I am beautiful princess 怎么读?
- 6依依服装店某一天将两件不同的衣服均以每件120元出售,结果一件赚20%,另一件赔20%,那么商店老板是赚了,还是亏了?赚(亏)了多少元?
- 7有120 名学生其中百分之六十订巜中国少年)百分之五十订(小灵通)两种都订阅的至少有多少人
- 8请问炼钢汽包用的软化水硬度单位mmol/L如何转换成mg/L
- 92个3和2个8 如何等于24
- 10摩擦为什么会生热?物体的内能为什么会变 举个例
热门考点