当前位置: > 设不等式2x-1>m(x2-1)对满足条件|m|≤2的一切实数m都恒成立,求实数x的取值范围....
题目
设不等式2x-1>m(x2-1)对满足条件|m|≤2的一切实数m都恒成立,求实数x的取值范围.

提问时间:2020-07-25

答案
令f(m)=-(x2-1)m+2x-1,原不等式等价于f(m)>0对于m∈[-2,2]恒成立,
由此得
f(2)>0
f(-2)>0
2(1-x2)+2x-1>0
-2(1-x2)+2x-1>0

解之得
7
-1
2
< x<
3
+1
2

∴实数的取值范围为(
7
-1
2
3
+1
2
)
构造函数f(m)=-(x2-1)m+2x-1,原不等式等价于f(m)>0对于m∈[-2,2]恒成立,从而只需要
f(2)>0
f(−2)>0
即可,进而解不等式即可.

函数恒成立问题;二次函数的性质.

本题以不等式为载体,恒成立问题,关键是构造函数,变换主元,考查解不等式的能力.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.