题目
三角函数题:设三角形ABC的面积为S,S的范围为根号3到3,且向量AB乘以向量BC等于6,向量AB与向量BC的夹角为θ.
求:(1)θ的取值范围!(2)求函数f(θ)=(sinθ)平方+2sinθcosθ+3倍cosθ的平方的最小值.
2.已知向量m=(cosθ,sinθ)和n=(根号2-sinθ,cosθ),θ∈(π,2π)且|m+n|=5分之8倍根号2,求cos(θ/2+π/8)的值?
求:(1)θ的取值范围!(2)求函数f(θ)=(sinθ)平方+2sinθcosθ+3倍cosθ的平方的最小值.
2.已知向量m=(cosθ,sinθ)和n=(根号2-sinθ,cosθ),θ∈(π,2π)且|m+n|=5分之8倍根号2,求cos(θ/2+π/8)的值?
提问时间:2020-07-25
答案
1
1)
做AD垂直BC于D
三角形ABC的面积=1/2 *AD*BC=1/2 *AB *BC &sinθ
已知三角形ABC的面积S满足 √3≤S≤3,且向量AB乘以向量BC等于6
(√3)/3≤sinθ≤1
θ∈[∏/3,2∏/3]
2)
f(θ)=(sinθ)^2+2sinθcosθ+3(cosθ)^2=(sinθ+cosθ)^2+2(cosθ)^2≥|2(sinθ+cosθ)(√2cosθ)|
以上仅当sinθ+cosθ=√2cosθ时,等式成立
当sinθ/cosθ=√2-1时.
f(θ)≥|2(sinθ+cosθ)(√2cosθ)|=(2√2)(tanθ+1)(cosθ)^2=4(cosθ)^2=4/(1+(tanθ)^2)=4/(4-2√2)=2+√2
即当tanθ=√2-1时,f(θ)取最小值2+√2
2.|m|=√(sinθ^2+cosθ^2)=1
|n|=√(2-2√2sinθ+sinθ^2+cosθ^2)=√(3-2√2sinθ)
|m+n|=(8√2)/5
(1+√(3-2√2sinθ)) =(8√2)/5
整理
sinθ=8/5-(9√2/50)
cosθ=√(1-sinθ^2)
再求出
cos(θ+π/4)=cosθcosπ/4 - sinθsinπ/4
再求出
cos(θ/2+π/8)=-√((1+cos(θ+π/4))/2 )
1)
做AD垂直BC于D
三角形ABC的面积=1/2 *AD*BC=1/2 *AB *BC &sinθ
已知三角形ABC的面积S满足 √3≤S≤3,且向量AB乘以向量BC等于6
(√3)/3≤sinθ≤1
θ∈[∏/3,2∏/3]
2)
f(θ)=(sinθ)^2+2sinθcosθ+3(cosθ)^2=(sinθ+cosθ)^2+2(cosθ)^2≥|2(sinθ+cosθ)(√2cosθ)|
以上仅当sinθ+cosθ=√2cosθ时,等式成立
当sinθ/cosθ=√2-1时.
f(θ)≥|2(sinθ+cosθ)(√2cosθ)|=(2√2)(tanθ+1)(cosθ)^2=4(cosθ)^2=4/(1+(tanθ)^2)=4/(4-2√2)=2+√2
即当tanθ=√2-1时,f(θ)取最小值2+√2
2.|m|=√(sinθ^2+cosθ^2)=1
|n|=√(2-2√2sinθ+sinθ^2+cosθ^2)=√(3-2√2sinθ)
|m+n|=(8√2)/5
(1+√(3-2√2sinθ)) =(8√2)/5
整理
sinθ=8/5-(9√2/50)
cosθ=√(1-sinθ^2)
再求出
cos(θ+π/4)=cosθcosπ/4 - sinθsinπ/4
再求出
cos(θ/2+π/8)=-√((1+cos(θ+π/4))/2 )
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
- 1花生滴碘液后为什么不变蓝,却会随碘液浓度由浓到淡会变黑或变为淡紫色,据查花生中含有淀粉呀 急,
- 2下面语句动用了哪些人体部位的比喻义,请补充.
- 3the Pacific Ocean 和 the Atlantic Ocean的音标啊!音标!不是意思!是音标!两个单词.
- 4x²-9x+18=0求解
- 5点C是△ABC,△CDE公共顶点,点P是AD和BE的交点,(1)若△ABC,△CDE是两个等边三角
- 6一个长40cM,宽20cm,高30cm〈从里面量〉的长方体玻璃缸水深18cm.现将一个铁球完全浸入水中,水面上升到25cm,求铁球的体积.
- 7孔子是我国春秋末期的什么家?
- 8长方形和正方形相同的地方只有四个角都是直角,对吗?
- 938.2x7.5+75+0.75x5.18如何简便方法运算?
- 10小明读一本书,第一天读了全书的20%,第二天比第一天多读了25%,第三天又读了12页,正好读了.
热门考点