题目
椭圆中心是坐标原点O,焦点在x轴上,e=根号3/2 过椭圆的左焦点F的直线交椭圆于PQ两点
PQ=20/9,且OP垂直于OQ,求此椭圆的方程.
急
PQ=20/9,且OP垂直于OQ,求此椭圆的方程.
急
提问时间:2020-07-25
答案
设椭圆方程为x²/a²+y²/b²=1(a>b>0)
由e=√3/2,得a=2b,c=√3b,则椭圆方程化为
x²/4b²+y²/b²=1
设P(x1,y1),Q(x2,y2)
不妨设PQ过椭圆右焦点,则PQ方程为:y-0=k(x-c)
即y=k(x-√3b)
代入椭圆方程,整理得
(4k²+1)x²-8√3bk²x+4b²(3k²-1)=0
x1+x2=8√3bk²/(4k²+1),x1x2=4b²(3k²-1)/(4k²+1)
由OP⊥OQ,得
(y1/x1)(y2/x2)=-1,即x1x2+y1y2=0
亦即x1x2+[k(x1-√3b)][k(x2-√3b)]=0,整理得
(1+k²)x1x2-√3bk²(x1+x2)+3b²k²=0
解得k²=4/11,则
x1+x2=32√3b/27,x1x2=4b²/27
|PQ|=√(1+k²)|x2-x1|
=(√15/11)√[(x1+x2)²-4x1x2]
=(√15/11)√[(32√3b/27)²-4(4b²/27)]
=20b/9=20/9
解得b=1,则a=2
故所求椭圆方程为x²/4+y²=1
由e=√3/2,得a=2b,c=√3b,则椭圆方程化为
x²/4b²+y²/b²=1
设P(x1,y1),Q(x2,y2)
不妨设PQ过椭圆右焦点,则PQ方程为:y-0=k(x-c)
即y=k(x-√3b)
代入椭圆方程,整理得
(4k²+1)x²-8√3bk²x+4b²(3k²-1)=0
x1+x2=8√3bk²/(4k²+1),x1x2=4b²(3k²-1)/(4k²+1)
由OP⊥OQ,得
(y1/x1)(y2/x2)=-1,即x1x2+y1y2=0
亦即x1x2+[k(x1-√3b)][k(x2-√3b)]=0,整理得
(1+k²)x1x2-√3bk²(x1+x2)+3b²k²=0
解得k²=4/11,则
x1+x2=32√3b/27,x1x2=4b²/27
|PQ|=√(1+k²)|x2-x1|
=(√15/11)√[(x1+x2)²-4x1x2]
=(√15/11)√[(32√3b/27)²-4(4b²/27)]
=20b/9=20/9
解得b=1,则a=2
故所求椭圆方程为x²/4+y²=1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1贝多芬晚年双耳失聪,他是怎样使自己听见自己的轻声进行创作的?
- 2求情态动词can、could、must、have to和should的练习题共20道题(全选择题也行,
- 3节约用纸的2种方法
- 4Sam picked a lot of oranges on the farm last Friday
- 510到90,英语数字,只说十们的,比如10,20,30到90
- 6英语作文《Low Carbon Living》
- 7常温下,1mol纯水中所含氢离子的物质的量为( ) A.10-7mol B.10-14mol C.1mol D.1.8×10-9mol
- 8i hope (that) you can join us与i hope you will join us一样吗
- 9五环电阻中,金银是否可以放在第二环上?如果可以,怎么读!
- 10I have a nice bedroom的中文是什么?