当前位置: > 高一数学不等式公式证明...
题目
高一数学不等式公式证明
求证(a+b+c)/3》(abc)开三次根号
a b c属于正有理数

提问时间:2020-07-25

答案
解析:∵a^3+b^3+c^3-3abc
=(a+b)^3-3ab(a+b)+c^3-3abc
=(a+b+c)[(a+b)^2-(a+b)c+c^2]-3ab(a+b+c)
=(a+b+c)[(a+b)^2-(a+b)c+c^2-3ab]
=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)
=1/2*(a+b+c)(2a^2+2b^2+2c^2-2ab-2bc-2ac)
=1/2*(a+b+c)[(a-b)^2+(b-c)^2+(a-c)^2]
∵a>0,b>0,c>0
∴a+b+c>0
(a-b)^2≥0,(b-c)^2≥0,(a-c)^2≥0,
则1/2*(a+b+c)[(a-b)^2+(b-c)^2+(a-c)^2]≥0
即a^3+b^3+c^3-3abc≥0
∴(a^3+b^3+c^3)/3≥abc
那么(a+b+c)/3≥(abc)^(1/3)
a,b,c是属于正实数成立,不是你说的正有理数.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.