当前位置: > 已知一直线与椭圆4x2+9y2=36相交于A、B两点,弦AB的中点坐标为M(1,1),求直线AB的方程....
题目
已知一直线与椭圆4x2+9y2=36相交于A、B两点,弦AB的中点坐标为M(1,1),求直线AB的方程.

提问时间:2020-07-25

答案
设通过点M(1,1)的直线方程为y=k(x-1)+1,代入椭圆方程,
整理得(9k2+4)x2+18k(1-k)x+9(1-k)2-36=0
设A、B的横坐标分别为x1、x2,则
x1+x2
2
=
-18k(1-k)
2(9k2+4)
=1

解之得k=-
4
9

故AB方程为y=-
4
9
(x-1)+1

即所求的方程为4x+9y-13=0.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.