题目
已知a,b为实数,一元二次方程ax^2+bx+1=0与bx^2+ax+1=0分别有两相异的实数根m,x1与m,x2,其中x2比x1大1,求方程x^2+ax+b=0的实数根
提问时间:2020-07-25
答案
两方程有公共根x=m,显然m不可能为0
am^2+bm+1=0
bm^2+am+1=0
两式相减得;(a-b)m^2+(b-a)m=0
得:(a-b)m(m-1)=0
m不为0,所以a=b或m=1
a=b的话两方程一样,根也相同,不符题意.
因此只能有m=1
故有a+b+1=0 1)
ax^2+bx+1=0的根为1,x1,两根积=x1=1/a
bx^2+ax+1=0的根为1,x2,两根积=x2=1/b
由题意,1/b=1/a+1,即a=b+ab 2)
由1),2),解得:
a=(-3+√5)/2,b=(1-√5)/2
因1+a+b=0,知x^2+ax+b=0的一个根显然也为1,两根积=b,知另一根为b=(1-√5)/2
am^2+bm+1=0
bm^2+am+1=0
两式相减得;(a-b)m^2+(b-a)m=0
得:(a-b)m(m-1)=0
m不为0,所以a=b或m=1
a=b的话两方程一样,根也相同,不符题意.
因此只能有m=1
故有a+b+1=0 1)
ax^2+bx+1=0的根为1,x1,两根积=x1=1/a
bx^2+ax+1=0的根为1,x2,两根积=x2=1/b
由题意,1/b=1/a+1,即a=b+ab 2)
由1),2),解得:
a=(-3+√5)/2,b=(1-√5)/2
因1+a+b=0,知x^2+ax+b=0的一个根显然也为1,两根积=b,知另一根为b=(1-√5)/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1课文船长近反义词急需.
- 2金属燃烧的颜色分别是什么?
- 3求证:等腰三角形一条腰上的高与底边所成的角的度数等于顶角的一半
- 4某地出租车的收费标准是:4千米内,起步价10元;4千米到a千米,每千米1.5元;a千米外,没千米2元.
- 5in fact ,it is morality that stops man from having his fellows as food in any situation.
- 61L,0.2mol的Hcl与1L,0.05mol的Ba(OH)2混合后,PH=1?啊是的
- 7CM向量=(4/3,4/3,4倍根号2).FD向量=(0,-2,-根号2),求两向量夹角的余弦值.
- 8解三角形画圆的方法的原理
- 91 一个质量为178g的铜球,体积为30cm3,是实心的还是空心的?其空心体积多大?若空心部分注满铝,总质量为多少?
- 10天空飘来五个字 是哪五个字?