当前位置: > 林德曼是如何证明无理数e...
题目
林德曼是如何证明无理数e

提问时间:2020-07-25

答案
是无理数的证明
证明:e=1+1/1!+1/2!+1/3!+...
假设e=p/m,(p,m为整数)显然e可表示为j/m!(j为整数).
由e=1+1/1!+1/2!+1/3!+...得e的展开式的前m+2项为e=1+1/1!+1/2!+1/3!+...+1/m!很明显此m+2项可表示为k/m!,(k为整数),而后的无穷项为1/(m+1)!+1/(m+2)!+...=1/m!(1/(m+1)+1/(m+1)(m+2)+...)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.