当前位置: > 设数列{an}中 a1=2.an+1=4an-3n+1 证明{an-n}是等比数列...
题目
设数列{an}中 a1=2.an+1=4an-3n+1 证明{an-n}是等比数列

提问时间:2020-07-25

答案
a(n+1)=4an-3n+1
a(n+1)-(n+1)=4an-4n
[a(n+1)-(n+1)]/(an-n)=4,为定值.
a1-1=2-1=1
数列{an-n}是以1为首项,4为公比的等比数列.
通项公式为an-n=4^(n-1)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.