题目
已知向量A=(cosx,sinx) B=(2cosx,2cosx)函数f(x)=A*B
(1)求|A|及f(π/24)的值 (2)在锐角▷ABC中 abc分别是ABC的对边,且F(C+π/24)=1,c=4,ab=3,求▷ABC的周长
(1)求|A|及f(π/24)的值 (2)在锐角▷ABC中 abc分别是ABC的对边,且F(C+π/24)=1,c=4,ab=3,求▷ABC的周长
提问时间:2020-07-25
答案
已知向量A=(cosx,sinx) B=(2cosx,2cosx)函数f(x)=A•B;(1)求|A|及f(π/24)的值 (2)在锐角
△ABC中 a,b,c分别是A,B,C的对边,且f(C+π/24)=1,c=4,ab=3,求△ABC的周长
(1) ︱A︱=√(cos²x+sin²x)=1;
f(x)=A•B=2cos²x+2sinxcosx=1+cos2x+sin2x=1+(√2)cos(2x-π/4)
故f(π/24)=1+(√2)cos(π/12-π/4)=1+(√2)cos(-π/6)=1+(√2)(√3/2)=1+(√6)/2=(2+√6)/2
(2)f(C+π/24)=1+(√2)cos[2(C+π/24)-π/4]=1+(√2)cos(2C-π/6)=1
故得cos(2C-π/6)=0,2C-π/6=π/2,2C=2π/3,∴C=π/3.
ab=3.(1)
由余弦定理得:
c²=16=a²+b²-2abcos60°=(a+b)²-2ab-ab=(a+b)²-3ab=(a+b)²-9
故(a+b)²=25,∴a+b=5
∴△ABC的周长L=a+b+c=4+5=9
△ABC中 a,b,c分别是A,B,C的对边,且f(C+π/24)=1,c=4,ab=3,求△ABC的周长
(1) ︱A︱=√(cos²x+sin²x)=1;
f(x)=A•B=2cos²x+2sinxcosx=1+cos2x+sin2x=1+(√2)cos(2x-π/4)
故f(π/24)=1+(√2)cos(π/12-π/4)=1+(√2)cos(-π/6)=1+(√2)(√3/2)=1+(√6)/2=(2+√6)/2
(2)f(C+π/24)=1+(√2)cos[2(C+π/24)-π/4]=1+(√2)cos(2C-π/6)=1
故得cos(2C-π/6)=0,2C-π/6=π/2,2C=2π/3,∴C=π/3.
ab=3.(1)
由余弦定理得:
c²=16=a²+b²-2abcos60°=(a+b)²-2ab-ab=(a+b)²-3ab=(a+b)²-9
故(a+b)²=25,∴a+b=5
∴△ABC的周长L=a+b+c=4+5=9
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1已知m^2+m-1=0,求m +2m^3+2008
- 2生命与和平相爱结尾有什么好处
- 3为什么钠可以把钛锆铌置换出来
- 4what time did you come to school this morning的中文是什么 英语按实际怎么回答
- 5设A={x|x=2k,k∈z},B={x|x=2k+1,k∈Z},c={x|x=2(k+1),k∈Z},D={x|x=2k-1k∈N*}则A、B、C D中相等的集合有()
- 6204.9保留有效数字2位 用科学计数法 结果是什么?要注意什么?
- 7polly spent much time to watch the video palys错在哪
- 8成语填空,并不是很难,只是不愿意查成语词典
- 9你喜欢晚饭后去散步吗?Do you like to _____ _____ _____ _____after dinner?
- 10解比例的公式 最好给个例子