题目
已知函数f(x)=x2-2ax+3
(1)若函数f(x)的单调递减区间(-∞,2],求函数f(x)在区间[3,5]上的最大值.
(2)若函数f(x)在区间(-∞,2]上是单调递减,求函数f(1)的最大值.
(1)若函数f(x)的单调递减区间(-∞,2],求函数f(x)在区间[3,5]上的最大值.
(2)若函数f(x)在区间(-∞,2]上是单调递减,求函数f(1)的最大值.
提问时间:2020-07-24
答案
∵函数f(x)=x2-2ax+3
故函数f(x)的单调递减区间(-∞,a],
(1)由f(x)的单调递减区间(-∞,2],
故a=2
则f(x)=x2-4x+3
又∵函数f(x)在区间[3,5]上单调递增
故x=5时,函数f(x)取最大值8-----(6分)
(2)由f(x)在区间(-∞,2]上是单调递减,
故a≥2
则f(1)=4-2a≤0
即函数f(1)的最大值为0----(12分)
故函数f(x)的单调递减区间(-∞,a],
(1)由f(x)的单调递减区间(-∞,2],
故a=2
则f(x)=x2-4x+3
又∵函数f(x)在区间[3,5]上单调递增
故x=5时,函数f(x)取最大值8-----(6分)
(2)由f(x)在区间(-∞,2]上是单调递减,
故a≥2
则f(1)=4-2a≤0
即函数f(1)的最大值为0----(12分)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1阿长与山海经课后题第四题
- 21方水有多重
- 3温州的主要自然灾害有哪两个
- 4写出5个以上大于四分之三并且小于五分之四的分数!
- 5伽马射线是怎样形成的
- 6发现,发明,创造,成就,有什么顺序
- 7根据距离大的意思写一个带"深"的词语
- 8they had much difficulty finding the small village改they had 空 空 time finding the small village
- 9六年级四个班体育达标的情况如下:一班达标人数与未达标人数的比是10:1,二班45人,有5人未达标;三班未达标的占全班人数的二十五分之二;四班47人达标,3人未达标.有( )个班的达标率在90%以上.
- 10反义词填成语口()是()
热门考点