当前位置: > 如图,在▱ABCD中,∠DAB=60°,点E、F分别在CD、AB的延长线上,且AE=AD,CF=CB. (1)求证:四边形AFCE是平行四边形; (2)若去掉已知条件的“∠DAB=60°”,上述的结论...
题目
如图,在▱ABCD中,∠DAB=60°,点E、F分别在CD、AB的延长线上,且AE=AD,CF=CB.

(1)求证:四边形AFCE是平行四边形;
(2)若去掉已知条件的“∠DAB=60°”,上述的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.

提问时间:2020-07-24

答案
(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,∠DCB=∠DAB=60°.∴∠ADE=∠CBF=60°.∵AE=AD,CF=CB,∴△AED,△CFB是正三角形.∴∠AEC=∠BFC=60°,∠EAF=∠FCE=120°.∴四边形AFCE是平行四边形.(2)上...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.