当前位置: > 设A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若A∩B=B,则实数m的取值范围是_....
题目
设A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若A∩B=B,则实数m的取值范围是______.

提问时间:2020-07-24

答案
①由B={x|m+1≤x≤2m-1}=∅,可得m+1>2m-1,m<2,
满足A∩B=B.
②B≠∅时,需
2m−1≥m+1
m+1≥−2
2m−1≤5
,解得2≤m≤3,
综上所述,实数m的取值范围是m<2或2≤m≤3,即m≤3.
故答案为:m≤3.
A∩B=B⇔B⊆A,利用集合的基本关系转化为元素与集合,元素与元素的关系求解.注意B=∅情情形.

交集及其运算.

本题考查的知识点是交集及其运算及集合的包含关系判断及应用,解答时容易漏掉B=∅的情况.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.