当前位置: > (1)求证:已知a,b,c均为正数,求证:1/(2a)+1/(2b)+1/(2c)>=1/(a+b)+1/(b+c)+1/(c+a)....
题目
(1)求证:已知a,b,c均为正数,求证:1/(2a)+1/(2b)+1/(2c)>=1/(a+b)+1/(b+c)+1/(c+a).
2)求证:a^2+b^2>=ab+a+b-1

提问时间:2020-07-24

答案
先说第一个两边同乘以二,则左边=(a+b)/2ab+(b+c)/2bc+(a+c)/2ac,右边=2/(a+b)+2/(b+c)+2/(a+c),对两个式子的第一项做商,得(a+b)^2/4ab,即[a-b)^2+4ab]/4ab,显然分子大于分母,代数式大于一所以=(a+b)/2...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.