当前位置: > 求教一个高数问题,S=∫[0到2]里面是[x^2 乘以根号下(1+x^2)]dx.怎么解?...
题目
求教一个高数问题,S=∫[0到2]里面是[x^2 乘以根号下(1+x^2)]dx.怎么解?
如果是不定积分我可能直接会令x=tant三角换元去根号,但是这个思路在这没走通,上下限经过换元出现arctan2难以处理,求解惑.

提问时间:2020-07-24

答案
∫x^2根号(1+x^2)dx
=1/3∫xd (1+x^2)^(3/2)
=1/3[x*(1+x^2)^(3/2)-∫(1+x^2)^(3/2)dx]
=1/3[x*(1+x^2)^(3/2)-x/8*(2x^3+5a^2)根号(x^2+a^2)+3/8*a^4*ln(x+根号(x^2+a^2)]
这个积分 ∫(1+x^2)^(3/2)dx可以从高数课本364积分表查得
建议你了解下这个积分如何推倒
参数方程和分部积分都是可以求出来的 不过应该蛮复杂的
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.