当前位置: > 首先:不难看出 ax²+bx+c≥4 与 (ax²+bx+c)的值域为[4,+无穷) 是有区别的...
题目
首先:不难看出 ax²+bx+c≥4 与 (ax²+bx+c)的值域为[4,+无穷) 是有区别的
但是:有这样一道题f(x)=(2x+1)分之(3x-2) f(x)属于(-无穷,-5]并[3,+无穷) ,求此函数的定义域
这道题为什么可以这样解:f(x)≤-5 或 f(x)≥3
然后再求出x的范围

提问时间:2020-07-24

答案
你说的很有道理.
确实两者是有区别的,
你所给的例题可以解的原因是f(x)是一个一对一的函数(即不同的自变量对应不同的函数值)
如果f(x)是二次函数,或者是一个多对一的函数,就无法从值域去确定定义域.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.