当前位置: > 广义积分中值定理的证明...
题目
广义积分中值定理的证明

提问时间:2020-07-24

答案
积分第一中值定理:若f在[a,b]上连续,则至少存在一点c属于[a,b],使得在[a,b]上的积分值等于f(c)(b-a)
推广:若f与g都在[a,b]上连续,且g在[a,b]上不变号,则至少存在一点c属于[a,b],使得f乘以g在[a,b]上的积分等于f(c)乘以g在[a,b]上的积分.
积分第二中值定理:设函数f在[a,b]上可积,1:若函数g在[a,b]上递减,且g大于等于0,则存在一点c属于[a,b],使得(f乘以g)在[a,b]上的积分等于g(a)乘以(f在[a,c]上的积分).2:若函数g在[a,b]上递增,且g大于等于0,则存在一点d属于[a,b],使得(f乘以g)在[a,b]上的积分等于g(b)乘以(f在[d,b]上的积分).
推论:设函数f在[a,b]上可积.若g为单调函数,则存在一点c属于[a,b],使得(f乘以g)的积分等于g(a)乘以(f在[a,c]上的积分)加上g(b)乘以(f在[c,b]上的积分)
证明太多,你可以参看由华东师范大学数学系编的数学分析217页和222页,数学分析书上应该都有.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.