题目
广义积分中值定理的证明
提问时间:2020-07-24
答案
积分第一中值定理:若f在[a,b]上连续,则至少存在一点c属于[a,b],使得在[a,b]上的积分值等于f(c)(b-a)
推广:若f与g都在[a,b]上连续,且g在[a,b]上不变号,则至少存在一点c属于[a,b],使得f乘以g在[a,b]上的积分等于f(c)乘以g在[a,b]上的积分.
积分第二中值定理:设函数f在[a,b]上可积,1:若函数g在[a,b]上递减,且g大于等于0,则存在一点c属于[a,b],使得(f乘以g)在[a,b]上的积分等于g(a)乘以(f在[a,c]上的积分).2:若函数g在[a,b]上递增,且g大于等于0,则存在一点d属于[a,b],使得(f乘以g)在[a,b]上的积分等于g(b)乘以(f在[d,b]上的积分).
推论:设函数f在[a,b]上可积.若g为单调函数,则存在一点c属于[a,b],使得(f乘以g)的积分等于g(a)乘以(f在[a,c]上的积分)加上g(b)乘以(f在[c,b]上的积分)
证明太多,你可以参看由华东师范大学数学系编的数学分析217页和222页,数学分析书上应该都有.
推广:若f与g都在[a,b]上连续,且g在[a,b]上不变号,则至少存在一点c属于[a,b],使得f乘以g在[a,b]上的积分等于f(c)乘以g在[a,b]上的积分.
积分第二中值定理:设函数f在[a,b]上可积,1:若函数g在[a,b]上递减,且g大于等于0,则存在一点c属于[a,b],使得(f乘以g)在[a,b]上的积分等于g(a)乘以(f在[a,c]上的积分).2:若函数g在[a,b]上递增,且g大于等于0,则存在一点d属于[a,b],使得(f乘以g)在[a,b]上的积分等于g(b)乘以(f在[d,b]上的积分).
推论:设函数f在[a,b]上可积.若g为单调函数,则存在一点c属于[a,b],使得(f乘以g)的积分等于g(a)乘以(f在[a,c]上的积分)加上g(b)乘以(f在[c,b]上的积分)
证明太多,你可以参看由华东师范大学数学系编的数学分析217页和222页,数学分析书上应该都有.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1x+1, x>0 函数y= { 0, x=0 x+1, x<0 试写出给定自变量x,求函数值y的算法.
- 2对划线部分提问(英语)
- 3平面直角坐标系的建立是在平面内取______两条数轴;取______为正方向;两条数轴的______相同;
- 4(1)记承天寺夜游中苏轼夜游的原因是什么?
- 5一个数由3个1,4个10,9个十分之一组成,这个数是多少
- 6某活动小组为了估计装有5个白球和若干个红球(每个球除颜色外都相同)的袋中红球接近多少个,在不将袋中球倒出来的情况下,分小组进行摸球试验,两人一组,共20组进行摸球实验.其
- 7掷一枚硬币,正面朝上的概率为1/2.掷两枚硬币,正面同时朝上的概率为1/4.用树形图求出掷3枚硬币,正面同时朝上的概率
- 8以水为层析液,最适合用纸层析法分离的物质是( ) A.叶绿体色素和液泡中的色素 B.葡萄糖和果糖 C.叶绿素和类胡萝卜素 D.雄性激素和雌性激素
- 9文章如下:
- 10在一个长10厘米,宽7厘米的长方形中,最多可放_个半径是1厘米的圆.