当前位置: > 设x1,x2是关于x的方程x²-4x+k+1=0的两个实数根,试问:是否存在实数k,使得x1*x2>x1+x2成立?请说明理由...
题目
设x1,x2是关于x的方程x²-4x+k+1=0的两个实数根,试问:是否存在实数k,使得x1*x2>x1+x2成立?请说明理由

提问时间:2020-07-24

答案
x1*x2=c/a=k+1,
x1+x2=-b/a=4
若x1*x2>x1+x2
则有k+1>4
k>3
x1,x2为实数根,所以
b^2-4ac=16-4(k+1)=12-4k>=0
k〈=3
所以不存在实数k
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.