当前位置: > 证明:对任意正整数n,不等式ln(n+1)/n...
题目
证明:对任意正整数n,不等式ln(n+1)/n<(n+1)/(n^2)

提问时间:2020-07-24

答案
令f(x)=xln(x+1)-xlnx-(x+1)/x,x>=1.
则f'(x)=ln(x+1)-lnx+x/(x+1)-1+1/x^2,
f''(x)=1/(x+1)-1/x+1/(x+1)^2-2/x^3=-1/【(x+1)x】+1/(x+1)^2-2/x^3=-1/【x(x+1)^2】-2/x^3<0
于是f'(x)是递减函数,注意到lim (x趋于无穷)f'(x)=lim ln(1+1/x)+1/x^2-1/(x+1)=0,因此f'(x)>0对任意的x>=1.
故f(x)是递增函数,但lim (x趋于无穷)f(x)=lim 【xln(1+1/x)-(x+1)/x】=0,于是f(x)<0对所有的x成立.即有ln(1+1/x)<(x+1)/x^2,x>=1时.令x取正整数即可.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.