当前位置: > 数列{an}的前n项和为Sn,已知a1=1/2,Sn=n^2an-n(n-1) (1)证明:数列{(n+1)/n*Sn}是等差数列,求Sn...
题目
数列{an}的前n项和为Sn,已知a1=1/2,Sn=n^2an-n(n-1) (1)证明:数列{(n+1)/n*Sn}是等差数列,求Sn

提问时间:2020-07-24

答案
(1).看到Sn的式子,可以把An变为Sn-Sn-1,所以将原式变为Sn=n^2(Sn-Sn-1)-n(n-1).分解移项,得(n^2-1)Sn+n^2Sn-1+n(n-1) 两边同除n(n-1) 得 (n+1)Sn/n-nSn/n-1=1 所以数列{(n+1)Sn/n}是等差数列 令(n+1)Sn/n=Bn B...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.