题目
数列{an}的前n项和为Sn,已知a1=1/2,Sn=n^2an-n(n-1) (1)证明:数列{(n+1)/n*Sn}是等差数列,求Sn
提问时间:2020-07-24
答案
(1).看到Sn的式子,可以把An变为Sn-Sn-1,所以将原式变为Sn=n^2(Sn-Sn-1)-n(n-1).分解移项,得(n^2-1)Sn+n^2Sn-1+n(n-1) 两边同除n(n-1) 得 (n+1)Sn/n-nSn/n-1=1 所以数列{(n+1)Sn/n}是等差数列 令(n+1)Sn/n=Bn B...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1在一个边长是8米的正方形草坪四周有一条1米宽的花圃.在花圃里栽有牡丹花,每棵占地1平方米,一共要栽多少棵?(先画出示意图,再解答)
- 2请问这个句子完整吗?I am sorry to make you wait.
- 3青蛙是两心房一心室,还是一心房一心室.?
- 4把气球放入深海会爆吗?
- 5某烃A,相对分子质量为140,其中碳的质量分数为0.857.A分子中有两个碳原子不与氢原子直接相连.A在一定条件下氧化只生成G,G能使石蕊试液变红. 已知: 试写出: (1)A的分子式_. (2
- 6设向量a=(cosa,sina),向量b=(cosβ,sinβ),其中0
- 7图1,直线L过正方形ABCD的顶点B,点A、C到直线L的距离分别是1和2,则正方形ABCD的边长是多少
- 82 3 1 -3 -7 1 2 0 -2 -4 3 -2 8 3 0 2 -3 7 4 3 以上矩阵怎么化为行最简形矩阵
- 9数学极限的几道题.
- 10在一个标准大气压下做托里拆利实验时,当玻璃管中的水银柱稳定后,在管顶穿一小孔,那么管内的水银将( ) A.往上喷出 B.稍微降下一些 C.降低到和管外水银面相平 D.保持原来的高度不变
热门考点
- 1一拱形公路桥攻拱的水面跨度AB=80M,拱高为20M,求拱 桥的半径
- 2一块三角形地的面积是0.8公顷,它的底是400米,它的高是多少米?
- 3用1、2、3、4、5、6、7、8、9九个数字,组成几个自然数,使它们的和是135,其中所有两数位的和最大是
- 4中国革命新道路理论是怎样形成的?形成的基本理论内容有哪些?
- 5有关“秦汉”的不同意义
- 6几道和“鸡兔同笼”相似的问题
- 7360000Ws等于多少kWh?怎么计算
- 8The problem is too difficult.Can you _____? A.work out it B.work out C.work it out D.work on it
- 9英语改错:The lady whom was brave and beautiful...
- 10能量最低原理中的能量指什么