当前位置: > 设直线y=ax与抛物线y=x^2所围成的图形面积为s1,它们直线x=1所围成的图形面积为s2,...
题目
设直线y=ax与抛物线y=x^2所围成的图形面积为s1,它们直线x=1所围成的图形面积为s2,
.y=ax与y=x^2所围图形的面积为s1,它们与x=1所围
图形的面积为s2
(1)求a,使s1+s2为最小,并求最小值
(2)求最小值对应的图形绕x轴旋转所得旋转体体积

提问时间:2020-07-24

答案
(1)由题
S1=1/6a³,S2=1/6a³-1/2a+1/3
∴S1+S2=1/3a³-1/2a+1/3
得:当a=√2/2时,S1+S2最小.min(S1+S2)=1/3-√2/6
(2)
V=π(√2+1)/30
解答过程全都用到积分,百度的输入框没办法打.只能算个答案给你了,过程有问题可以问我~
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.