当前位置: > 已知函数f(x)=lnx+a/x(a∈R).(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与直线x-y-1=0平行,求a的值;(Ⅱ)求函数f(x)的单调区间和极值....
题目
已知函数f(x)=
lnx+a
x
(a∈R)

(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与直线x-y-1=0平行,求a的值;
(Ⅱ)求函数f(x)的单调区间和极值.

提问时间:2020-07-24

答案
(Ⅰ)函数f(x)的定义域为{x|x>0},
所以f′(x)=
1-lnx-a
x 2

又曲线y=f(x)在点(1,f(1))处的切线与直线x-y-1=0平行,
所以f'(1)=1-a=1,即a=0.
(Ⅱ)令f'(x)=0,得x=e1-a
当x变化时,f′(x),f(x)的变化情况如下表:

由表可知:f(x)的单调递增区间是(0,e1-a),单调递减区间是(e1-a,+∞).
所以f(x)在x=e1-a处取得极大值,f(x)极大值=f(e1-a)=ea-1
(I)欲求a的值,根据在点(1,f(1))处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.再列出一个等式,最后解方程组即可得.
(II)先求出f(x)的导数,根据f′(x)>0求得的区间是单调增区间,f′(x)<0求得的区间是单调减区间,最后求出极值即可.

A:利用导数研究曲线上某点切线方程 B:利用导数研究函数的单调性

本小题主要考查利用导数研究曲线上某点切线方程、利用导数研究函数的单调性、导数的应用等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.