当前位置: > 已知二次函数y=ax^2+bx+c的图像经过点A(3,0),B(2,-3),C(0,-3)...
题目
已知二次函数y=ax^2+bx+c的图像经过点A(3,0),B(2,-3),C(0,-3)
1.求此函数关系式和图像对称轴
2.对称轴是否存在点P,使得△PAB中PA=PB?若存在,求出点P

提问时间:2020-07-24

答案
1.先设解析式为y=ax^2+bx+c(一般式)
由图可得图像经过A(3,0)B(2,-3) C(0,-3)得
①9a+3b+c=0
②4a+2b+c=-3
③c=-3
------------------------------------------------
(此为解方程组 ↓ )
将c代入①得b=1-3a ④
将④代入②得4a+2×( 1-3a )-3=-3
-----------------------------------------------
解得a=1 b=-2 c=-3
∴解析式为y=x²-2x-3
图像对称轴就先把y=x²-2x-3化为顶点式为y=(x²-1)-4 对称轴直线x=1 画图像这就不用说了
2.存在
设对称轴与x轴的交点为D,使AD与BD相等就行了
THE END 这种是属于A组题(基础题)这不会做就说明你上课没认真听!其实书上就有关于此题的解题过程
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.