当前位置: > 一元二次方程 根的判别式...
题目
一元二次方程 根的判别式
1.证明:关于x的一元二次方程x^2+(a+1)x+2(a-2)=0,一定有两个不相等的实数根.
2.已知方程x^2+(2m+1)x+m^2+2=0有两个相等的实数根,试判断直线y=(2m-3)x-4m-7是否过点A(-2,4)?说明理由
3.判定关于x的方程(x-a)(x-2)=0的根的情况,并说明理由.

提问时间:2020-07-24

答案
1、证明:由题可知,根据b方-4ac,得
(a+1)方-8(a-2)
=a方+2a+1-8a+16
=a方-6a+17
=(a-3)方+8
因为无论a取何职,上式总大于0,
因此,此方程一定有两个不相等的实数根.
2、由原方程可知,可根据b方-4ac,可求出
m=7/4
代入直线方程,得
y=1/2x-14.
因此,不经过(-2,4).
3、由题可根据b方-4ac,最终可化为:(a-2)方
当a=2时,方程有两个相等的实数根,
当a不等于2时,方程必有两个不相等的实数根.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.